Signed total (j, k)-domatic numbers of graphs

نویسنده

  • Lutz Volkmann
چکیده

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ j for each x ∈ V (G), is called a signed total (j, k)-dominating family (of functions) on G, where j ≥ 1 is an integer. The maximum number of functions in a signed total (j, k)dominating family on G is the signed total (j, k)-domatic number of G, denoted by d (j,k) st (G). In this paper we initiate the study of the signed total (j, k)-domatic number. We present different bounds on d (j,k) st (G), and we determine the signed total (j, k)-domatic number for special graphs. Some of our results are extensions of well-known properties of different other signed total domatic numbers. 1 Terminology and introduction Various numerical invariants of graphs concerning domination were introduced by means of dominating functions and their variants (see, for example, Haynes, Hedetniemi and Slater [1, 2]). In this paper we define the signed total (j, k)-domatic number in an analogous way as Henning [4] has introduced the signed total domatic number. We consider finite, undirected and simple graphs G with vertex set V (G) = V and edge set E(G) = E. The cardinality of the vertex set of a graph G is called the order of G and is denoted by n(G) = n. If v ∈ V (G), then NG(v) = N(v) is the open neighborhood of v, i.e., the set of all vertices adjacent to v. The closed neighborhood NG[v] = N [v] of a vertex v consists of the vertex set N(v) ∪ {v}. The number dG(v) = d(v) = |N(v)| is the degree of the vertex v. The minimum and maximum degree of a graph G are denoted by δ(G) and Δ(G). The complement of a graph G is denoted by G. A fan is a graph obtained from a path by adding a new

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

Upper bounds on the signed total (k, k)-domatic number of graphs

Let G be a graph with vertex set V (G), and let f : V (G) −→ {−1, 1} be a two-valued function. If k ≥ 1 is an integer and ∑ x∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that ∑d i=1 fi(x) ≤ k for each x ∈ V (G), is call...

متن کامل

On the signed total domatic numbers of directed graphs

Let D = (V,A) be a finite simple directed graph (shortly digraph) in which dD(v) ≥ 1 for all v ∈ V . A function f : V −→ {−1, 1} is called a signed total dominating function if ∑ u∈N−(v) f(u) ≥ 1 for each vertex v ∈ V . A set {f1, f2, . . . , fd} of signed total dominating functions on D with the property that ∑d i=1 fi(v) ≤ 1 for each v ∈ V (D), is called a signed total dominating family (of f...

متن کامل

Signed k-domatic numbers of graphs

Let D be a finite and simple digraph with vertex set V (D), and let f : V (D)→ {−1,1} be a two-valued function. If k ≥ 1 is an integer and ∑x∈N−[v] f (x) ≥ k for each v∈V (D), where N−[v] consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set { f1, f2, . . . , fd} of distinct signed k-dominating functions of D with the property that ∑...

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2013